Finite Element Analysis of an Exponentially Graded Mesh for Singularly Perturbed Problems

نویسندگان

  • Philippos Constantinou
  • Christos Xenophontos
چکیده

We present the mathematical analysis for the convergence of an h version Finite Element Method (FEM) with piecewise polynomials of degree p ≥ 1, de ned on an exponentially graded mesh. The analysis is presented for a singularly perturbed reaction-di usion and a convection-di usion equation in one dimension. We prove convergence of optimal order and independent of the singular perturbation parameter, when the error is measured in the natural energy norm associatedwith each problem. Numerical results comparing the exponential mesh with the Bakhvalov–Shishkin mesh from the literature are also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient numerical method for singularly perturbed second order ordinary differential equation

In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It ...

متن کامل

Numerical method for a system of second order singularly perturbed turning point problems

In this paper, a parameter uniform numerical method based on Shishkin mesh is suggested to solve a system of second order singularly perturbed differential equations with a turning point exhibiting boundary layers. It is assumed that both equations have a turning point at the same point. An appropriate piecewise uniform mesh is considered and a classical finite difference scheme is applied on t...

متن کامل

On the hp Finite Element Method for Singularly Perturbed Two-Point Boundary Value Problems

In this work, a singularly perturbed two-point boundary value problem of convection-diiusion type is considered. A hp version nite element method on a strongly graded piecewise uniform mesh of Shishkin type is used to solve the model problem. With the analytic assumption of the input data, it is shown that the method converges exponentially and the convergence is uniformly valid with respect to...

متن کامل

A Parameter Uniform Numerical Scheme for Singularly Perturbed Differential-difference Equations with Mixed Shifts

In this paper, we consider a second-order singularly perturbed differential-difference equations with mixed delay and advance parameters. At first, we approximate the model problem by an upwind finite difference scheme on a Shishkin mesh. We know that the upwind scheme is stable and its solution is oscillation free, but it gives lower order of accuracy. So, to increase the convergence, we propo...

متن کامل

Uniformly Convergent 3-tgfem Vs Lsfem for Singularly Perturbed Convection-diffusion Problems on a Shishkin Based Logarithmic Mesh

In the present work, three-step Taylor Galerkin finite element method(3TGFEM) and least-squares finite element method(LSFEM) have been discussed for solving parabolic singularly perturbed problems. For singularly perturbed problems, a small parameter called singular perturbation parameter is multiplied with the highest order derivative term. As this singular perturbation parameter approaches to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Meth. in Appl. Math.

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015